全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學課件 > 人教高中數(shù)學A版必修一 > 《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解)

《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解)

《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解) 詳細介紹:

《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解)《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解)《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解)《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解)《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解)

《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解)

第一部分內容:學習目標

理解函數(shù)零點的定義,會求函數(shù)的零點

掌握函數(shù)零點的判斷方法,會判斷函數(shù)零點的個數(shù)及其所在區(qū)間

會根據(jù)函數(shù)零點的情況求參數(shù)

... ... ...

函數(shù)的應用PPT,第二部分內容:自主學習

問題導學

預習教材P142-P144,并思考以下問題:

1.函數(shù)零點的概念是什么?

2.如何判斷函數(shù)的零點?

3.方程的根、函數(shù)的圖象與x軸的交點、函數(shù)的零點三者之間的聯(lián)系是什么?

新知初探

1.函數(shù)的零點

(1)概念:對于一般函數(shù)f(x),我們把使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點.

(2)方程的根、函數(shù)的圖象與x軸的交點、函數(shù)的零點三者之間的聯(lián)系

■名師點撥

函數(shù)的零點不是一個點,而是一個實數(shù),當自變量取該值時,其函數(shù)值等于零.

2.函數(shù)零點的判斷

自我檢測

判斷正誤(正確的打“√”,錯誤的打“×”)

(1)函數(shù)的零點是一個點.(  )

(2)任何函數(shù)都有零點.(  )

(3)若函數(shù)y=f(x)在區(qū)間(a,b)上有零點,則一定有f(a)•f(b)<0.(  )

函數(shù)f(x)=log2(2x-1)的零點是(  )

A.1 B.2

C.(1,0) D.(2,1)

函數(shù)f(x)=x3-3x-3有零點的區(qū)間是(  )

A.(-1,0) B.(0,1)

C.(1,2) D.(2,3)

已知函數(shù)f(x)=-2x+m的零點為4,則實數(shù)m的值為________. 

已知函數(shù)y=f(x)的定義域為R,圖象連續(xù)不斷,若計算得f(1)<0,f(1.25)<0,f(1.5)>0,則可以確定零點所在區(qū)間為________.

... ... ...

函數(shù)的應用PPT,第三部分內容:講練互動

求函數(shù)的零點

判斷下列函數(shù)是否存在零點,如果存在,請求出.

(1)f(x)=x+3x;      

(2)f(x)=x2+2x+4;

(3)f(x)=2x-3;  

(4)f(x)=1-log3x.

【解】(1)令x+3x=0,解得x=-3,

所以函數(shù)f(x)=x+3x的零點是-3.

(2)令x2+2x+4=0,

由于Δ=22-4×4=-12<0,

所以方程x2+2x+4=0無解,

所以函數(shù)f(x)=x2+2x+4不存在零點.

(3)令2x-3=0,

解得x=log23,

所以函數(shù)f(x)=2x-3的零點是log23.

(4)令1-log3x=0,

解得x=3,

所以函數(shù)f(x)=1-log3x的零點是3.

規(guī)律方法

函數(shù)零點的求法

求函數(shù)y=f(x)的零點通常有兩種方法:一是令f(x)=0,根據(jù)解方程f(x)=0的根求得函數(shù)的零點;二是畫出函數(shù)y=f(x)的圖象,圖象與x軸的交點的橫坐標即為函數(shù)的零點. 

判斷函數(shù)零點所在的區(qū)間或個數(shù)

(1)函數(shù)f(x)=x2+2x-3,x≤0,-2+lnx,x>0的零點個數(shù)為(  )

A.3B.2C.1 D.0

(2)函數(shù)f(x)=lnx-2x的零點所在的大致區(qū)間是(  )

A.(1,2)B.(2,3)  C.(3,4) D.(e,+∞)

【解析】 (1)當x≤0時,由f(x)=x2+2x-3=0得x1=-3,x2=1(舍去);

當x>0時,由f(x)=-2+lnx=0得x=e2.

所以函數(shù)的零點個數(shù)為2.

(2)因為f(1)=-2<0,f(2)=ln2-1<0,

所以在(1,2)內f(x)無零點,A錯;

又f(3)=ln3-23>0,

所以f(2)•f(3)<0,

所以f(x)在(2,3)內有零點.

規(guī)律方法

(1)判斷函數(shù)零點所在區(qū)間的3個步驟

①代入:將區(qū)間端點值代入函數(shù)解析式求出相應的函數(shù)值.

②判斷:把所得的函數(shù)值相乘,并進行符號判斷.

③結論:若符號為正且函數(shù)在該區(qū)間內是單調函數(shù),則在該區(qū)間內無零點,若符號為負且函數(shù)連續(xù),則在該區(qū)間內至少有一個零點.

(2)判斷函數(shù)存在零點的2種方法

①方程法:若方程f(x)=0的解可求或能判斷解的個數(shù),可通過方程的解來判斷函數(shù)是否存在零點或判定零點的個數(shù).

②圖象法:由f(x)=g(x)-h(huán)(x)=0,得g(x)=h(x),在同一平面直角坐標系內作出y1=g(x)和y2=h(x)的圖象,根據(jù)兩個圖象交點的個數(shù)來判定函數(shù)零點的個數(shù). 

... ... ...

函數(shù)的應用PPT,第四部分內容:達標反饋

1.函數(shù)f(x)=2x2-3x+1的零點是(  )

A.-12,-1 B.12,1

C.12,-1 D.-12,1

2.函數(shù)y=x2-bx+1有一個零點,則b的值為(  )

A.2 B.-2

C.±2 D.3

3.函數(shù)f(x)=ex+x-2的零點所在的一個區(qū)間是(  )

A.(-2,-1)  B.(-1,0)

C.(0,1) D.(1,2)

4.函數(shù)f(x)=2x+x-2有________個零點.

... ... ...

關鍵詞:高中人教A版數(shù)學必修一PPT課件免費下載,函數(shù)的應用PPT下載,指數(shù)函數(shù)與對數(shù)函數(shù)PPT下載,函數(shù)的零點與方程的解PPT下載,.PPT格式;

《函數(shù)的應用》指數(shù)函數(shù)與對數(shù)函數(shù)PPT(第一課時函數(shù)的零點與方程的解) 下載地址:

本站素材僅供學習研究使用,請勿用于商業(yè)用途。未經允許,禁止轉載。

與本課相關的PPT課件:

  • 《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質課件(第3課時)

    《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質課件(第3課時)

    北師大版八年級數(shù)學上冊《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質課件(第3課時),共32頁。 素養(yǎng)目標 1. 進一步訓練識圖能力,通過函數(shù)圖象獲取信息,解決簡單的實際問題. 2. 在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)數(shù)形結合意識,發(fā)展形象思維. 探究新知 兩個一次函..

  • 《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質課件(第2課時)

    《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質課件(第2課時)

    北師大版八年級數(shù)學上冊《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質課件(第2課時),共31頁。 素養(yǎng)目標 1. 會利用一次函數(shù)的圖像和關系式解決簡單實際問題. 2. 了解一元一次方程與一次函數(shù)的聯(lián)系. 3. 經歷用函數(shù)圖象表示一元一次方程的過程,進一步體會以形表示數(shù),以..

  • 《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質課件(第1課時)

    《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質課件(第1課時)

    北師大版八年級數(shù)學上冊《一次函數(shù)的應用》一次函數(shù)PPT優(yōu)質課件(第1課時),共23頁。 素養(yǎng)目標 1.理解待定系數(shù)法的意義. 2.學會運用待定系數(shù)法和數(shù)形結合思想求一次函數(shù)解析式. 探究新知 待定系數(shù)法求一次函數(shù)的解析式 某物體沿一個斜坡下滑,它的速度 v (米..

  • 《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第2課時)

    《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第2課時)

    北師大版九年級數(shù)學下冊《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第2課時),共19頁。 教學目標 1、熟練掌握用二次函數(shù)的性質求出商品利潤的最大值問題,學會根據(jù)具體情況,由二次函數(shù)的性質,表示出正確的最大值; 2、學會根據(jù)實際問題的自變量的取值范圍求出..

  • 《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第1課時)

    《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第1課時)

    北師大版九年級數(shù)學下冊《二次函數(shù)的應用》二次函數(shù)PPT教學課件(第1課時),共38頁。 學習目標 1.分析實際問題中變量之間的二次函數(shù)關系.(難點) 2.會運用二次函數(shù)求實際問題中的最大值或最小值. 3.能應用二次函數(shù)的性質解決圖形中最大面積問題.(重點) 導..

  • 《三角函數(shù)的應用》直角三角形的邊角關系PPT教學課件

    《三角函數(shù)的應用》直角三角形的邊角關系PPT教學課件

    北師大版九年級數(shù)學下冊《三角函數(shù)的應用》直角三角形的邊角關系PPT教學課件,共26頁。 情境引入 我們已經知道輪船在海中航行時,可以用方位角準確描述它的航行方向. 那你知道如何結合方位角等數(shù)據(jù)進行計算,幫助輪船在航行中遠離危險嗎? 講授新課 與方位角..

熱門PPT課件
最新PPT課件
相關PPT標簽