《對(duì)數(shù)函數(shù)》指數(shù)函數(shù)與對(duì)數(shù)函數(shù)PPT課件(第1課時(shí)對(duì)數(shù)函數(shù)的概念、圖象及性質(zhì))
第一部分內(nèi)容:學(xué) 習(xí) 目 標(biāo)
1.理解對(duì)數(shù)函數(shù)的概念,會(huì)求對(duì)數(shù)函數(shù)的定義域.(重點(diǎn)、難點(diǎn))
2.能畫出具體對(duì)數(shù)函數(shù)的圖象,并能根據(jù)對(duì)數(shù)函數(shù)的圖象說明對(duì)數(shù)函數(shù)的性質(zhì).(重點(diǎn))
核 心 素 養(yǎng)
1.通過學(xué)習(xí)對(duì)數(shù)函數(shù)的圖象,培養(yǎng)直觀想象素養(yǎng).
2.借助對(duì)數(shù)函數(shù)的定義域的求解,培養(yǎng)數(shù)學(xué)運(yùn)算的素養(yǎng).
... ... ...
對(duì)數(shù)函數(shù)PPT,第二部分內(nèi)容:自主預(yù)習(xí)探新知
1.對(duì)數(shù)函數(shù)的概念
函數(shù)y=______(a>0,且a≠1)叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是______.
思考1:函數(shù)y=2log3x,y=log3(2x)是對(duì)數(shù)函數(shù)嗎?
提示:不是,其不符合對(duì)數(shù)函數(shù)的形式.
2.對(duì)數(shù)函數(shù)的圖象及性質(zhì)
思考2:對(duì)數(shù)函數(shù)的“上升”或“下降”與誰有關(guān)?
提示:底數(shù)a與1的關(guān)系決定了對(duì)數(shù)函數(shù)的升降.
當(dāng)a>1時(shí),對(duì)數(shù)函數(shù)的圖象“上升”;當(dāng)0<a<1時(shí),對(duì)數(shù)函數(shù)的圖象“下降”.
3.反函數(shù)
指數(shù)函數(shù)________(a>0,且a≠1)與對(duì)數(shù)函數(shù)y=__________________互為反函數(shù).
初試身手
1.函數(shù)y=logax的圖象如圖所示,則實(shí)數(shù)a的可能取值為( )
A.5 B.15 C.1e D.12
2.若對(duì)數(shù)函數(shù)過點(diǎn)(4,2),則其解析式為________.
3.函數(shù)f(x)=log2(x+1)的定義域?yàn)開_______.
... ... ...
對(duì)數(shù)函數(shù)PPT,第三部分內(nèi)容:合作探究提素養(yǎng)
對(duì)數(shù)函數(shù)的概念及應(yīng)用
【例1】(1)下列給出的函數(shù):①y=log5x+1;
②y=logax2(a>0,且a≠1);③y=log(3-1)x;
④y=13log3x;⑤y=logx3(x>0,且x≠1);
⑥y=log2πx.其中是對(duì)數(shù)函數(shù)的為( )
A.③④⑤ B.②④⑥
C.①③⑤⑥ D.③⑥
(2)若函數(shù)y=log(2a-1)x+(a2-5a+4)是對(duì)數(shù)函數(shù),則a=________.
(3)已知對(duì)數(shù)函數(shù)的圖象過點(diǎn)(16,4),則f12=__________.
(1)D (2)4 (3)-1 [(1)由對(duì)數(shù)函數(shù)定義知,③⑥是對(duì)數(shù)函數(shù),故選D.
(2)因?yàn)楹瘮?shù)y=log(2a-1)x+(a2-5a+4)是對(duì)數(shù)函數(shù),
所以2a-1>0,2a-1≠1,a2-5a+4=0,
解得a=4.
對(duì)數(shù)函數(shù)的定義域
【例2】求下列函數(shù)的定義域:
(1)f(x)=1log12x+1;
(2)f(x)=12-x+ln(x+1);
(3)f(x)=log(2x-1)(-4x+8).
規(guī)律方法
求對(duì)數(shù)型函數(shù)的定義域時(shí)應(yīng)遵循的原則
1分母不能為0.
2根指數(shù)為偶數(shù)時(shí),被開方數(shù)非負(fù).
3對(duì)數(shù)的真數(shù)大于0,底數(shù)大于0且不為1.
提醒:定義域是使解析式有意義的自變量的取值集合,求與對(duì)數(shù)函數(shù)有關(guān)的定義域問題時(shí),要注意對(duì)數(shù)函數(shù)的概念,若自變量在真數(shù)上,則必須保證真數(shù)大于0;若自變量在底數(shù)上,應(yīng)保證底數(shù)大于0且不等于1.
對(duì)數(shù)函數(shù)的圖象問題
[探究問題]
1.如圖,曲線C1,C2,C3,C4分別對(duì)應(yīng)y=loga1x,y=loga2x,y=loga3x,y=loga4x的圖象,你能指出a1,a2,a3,a4以及1的大小關(guān)系嗎?
提示:作直線y=1,它與各曲線C1,C2,C3,C4的交點(diǎn)的橫坐標(biāo)就是各對(duì)數(shù)的底數(shù),由此可判斷出各底數(shù)的大小必有a4>a3>1>a2>a1>0.
2.函數(shù)y=ax與y=logax(a>0且a≠1)的圖象有何特點(diǎn)?
提示:兩函數(shù)的圖象關(guān)于直線y=x對(duì)稱.
規(guī)律方法
函數(shù)圖象的變換規(guī)律
1一般地,函數(shù)y=fx±a+ba,b為實(shí)數(shù)的圖象是由函數(shù)y=fx的圖象沿x軸向左或向右平移|a|個(gè)單位長(zhǎng)度,再沿y軸向上或向下平移|b|個(gè)單位長(zhǎng)度得到的.
2含有絕對(duì)值的函數(shù)的圖象一般是經(jīng)過對(duì)稱變換得到的.一般地,y=f|x-a|的圖象是關(guān)于直線x=a對(duì)稱的軸對(duì)稱圖形;函數(shù)y=|fx|的圖象與y=fx的圖象在fx≥0的部分相同,在fx<0的部分關(guān)于x軸對(duì)稱.
課堂小結(jié)
1.判斷一個(gè)函數(shù)是不是對(duì)數(shù)函數(shù)關(guān)鍵是分析所給函數(shù)是否具有y=logax(a>0且a≠1)這種形式.
2.在對(duì)數(shù)函數(shù)y=logax中,底數(shù)a對(duì)其圖象直接產(chǎn)生影響,學(xué)會(huì)以分類的觀點(diǎn)認(rèn)識(shí)和掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì).
3.涉及對(duì)數(shù)函數(shù)定義域的問題,常從真數(shù)和底數(shù)兩個(gè)角度分析.
... ... ...
對(duì)數(shù)函數(shù)PPT,第四部分內(nèi)容:當(dāng)堂達(dá)標(biāo)固雙基
1.判斷一個(gè)函數(shù)是不是對(duì)數(shù)函數(shù)關(guān)鍵是分析所給函數(shù)是否具有y=logax(a>0且a≠1)這種形式.
2.在對(duì)數(shù)函數(shù)y=logax中,底數(shù)a對(duì)其圖象直接產(chǎn)生影響,學(xué)會(huì)以分類的觀點(diǎn)認(rèn)識(shí)和掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì).
3.涉及對(duì)數(shù)函數(shù)定義域的問題,常從真數(shù)和底數(shù)兩個(gè)角度分析.
2.下列函數(shù)是對(duì)數(shù)函數(shù)的是( )
A.y=2+log3x
B.y=loga(2a)(a>0,且a≠1)
C.y=logax2(a>0,且a≠1)
D.y=ln x
3.函數(shù)f(x)=lg x+lg(5-3x)的定義域是( )
A.0,53
B.0,53
C.1,53
D.1,53
4.已知f(x)=log3x.
(1)作出這個(gè)函數(shù)的圖象;
(2)若f(a)<f(2),利用圖象求a的取值范圍.
... ... ...
關(guān)鍵詞:高中人教A版數(shù)學(xué)必修一PPT課件免費(fèi)下載,對(duì)數(shù)函數(shù)PPT下載,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)PPT下載,對(duì)數(shù)函數(shù)的概念圖象及性質(zhì)PPT下載,.PPT格式;