人教版九年級(jí)數(shù)學(xué)上冊(cè)《二次函數(shù)與一元二次方程》二次函數(shù)PPT優(yōu)質(zhì)課件,共25頁(yè)。
學(xué)習(xí)目標(biāo)
1.通過(guò)探索,理解二次函數(shù)與一元二次方程之間的聯(lián)系.(難點(diǎn))
2.能運(yùn)用二次函數(shù)及其圖象、性質(zhì)確定方程的解或不等式的解集.(重點(diǎn))
3.了解用圖象法求一元二次方程的近似根.
新課導(dǎo)入
一次函數(shù) y=kx+b 與一元一次方程 kx+b=0 有什么關(guān)系?
方程的解是函數(shù)在x軸上的截距
以前我們從一次函數(shù)的角度看一元一次方程,認(rèn)識(shí)了一次函數(shù)與一元一次方程的聯(lián)系.本節(jié)我們從二次函數(shù)的角度看一元二次方程,認(rèn)識(shí)二次函數(shù)與一元二次方程的聯(lián)系.先來(lái)看下面的問(wèn)題.
知識(shí)點(diǎn)1 二次函數(shù)與一元二次方程的關(guān)系
如圖,以 40 m/s 的速度將小球沿與地面成 30° 角的方向擊出時(shí),小球的飛行路線將是一條拋物線,如果不考慮空氣的阻力,小球的飛行高度 h(單位:m)與飛行時(shí)間 t(單位:s)之間具有函數(shù)關(guān)系:
h=20t-5t2,考慮以下問(wèn)題:
(1)球的飛行高度能否達(dá)到15 m?如果能,需要多少飛行時(shí)間?
(2)球的飛行高度能否達(dá)到20 m?如果能,需要多少飛行時(shí)間?
(3)球的飛行高度能否達(dá)到20.5 m?如果能,需要多少飛行時(shí)間?
(4)球從飛出到落地要用多少時(shí)間?
從上面發(fā)現(xiàn),一般地,當(dāng) y 取定值且 a≠0 時(shí),二次函數(shù)為一元二次方程.
如:y=5 時(shí),5=ax2+bx+c 就是一個(gè)一元二次方程.
所以二次函數(shù)與一元二次方程關(guān)系密切.
例如,已知二次函數(shù) y=-x2+4x 的值為 3,求自變量 x 的值,可以解一元二次方程 -x2+4x=3(即x2-4x+3=0).
反過(guò)來(lái),解方程 x2-4x+3=0 又可以看作已知二次函數(shù) y = x2-4x+3 的值為0,求自變量 x 的值.
知識(shí)點(diǎn)2 公共點(diǎn)的問(wèn)題
下列二次函數(shù)的圖象與 x 軸有公共點(diǎn)嗎?如果有,公共點(diǎn)的橫坐標(biāo)是多少?當(dāng) x 取公共點(diǎn)的橫坐標(biāo)時(shí),函數(shù)的值是多少?由此你能得出相應(yīng)的一元二次方程的根嗎?
(1) y=x2-x+1;
(2) y=x2-6x+9;
(3) y=x2+x-2.
利用二次函數(shù)的圖象解一元二次方程基本步驟:
1.在平面直角坐標(biāo)系內(nèi)畫(huà)出二次函數(shù)的圖象;
2.觀察圖形,確定拋物線與 x 軸的公共點(diǎn)的坐標(biāo);
3.公共點(diǎn)的橫坐標(biāo)就是對(duì)應(yīng)一元二次方程的解.
當(dāng)堂小練
1. 已知二次函數(shù)y=x2-3x+m(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2-3x+m=0的兩實(shí)數(shù)根是( )
A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
2.拋物線y=ax2+bx+c與x軸的公共點(diǎn)是(-1,0),(3,0),則這條拋物線的對(duì)稱(chēng)軸是( )
A.直線x=-1 B.直線x=0 C.直線x=1 D.直線x=3
3.在圖中畫(huà)出函數(shù)y=x2-2x-3的圖象,利用圖象回答:
(1)方程x2-2x-3=0的解是多少;
(2)x取什么值時(shí),函數(shù)值大于0;
(3)x取什么值時(shí),函數(shù)值小于0.
... ... ...
關(guān)鍵詞:二次函數(shù)與一元二次方程PPT課件免費(fèi)下載,二次函數(shù)PPT下載,.PPTX格式;