全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學(xué)課件 > 人教版九年級(jí)數(shù)學(xué)上冊 > 《二次函數(shù)與一元二次方程》二次函數(shù)PPT優(yōu)秀課件

《二次函數(shù)與一元二次方程》二次函數(shù)PPT優(yōu)秀課件

《二次函數(shù)與一元二次方程》二次函數(shù)PPT優(yōu)秀課件 詳細(xì)介紹:

《二次函數(shù)與一元二次方程》二次函數(shù)PPT優(yōu)秀課件《二次函數(shù)與一元二次方程》二次函數(shù)PPT優(yōu)秀課件

人教版九年級(jí)數(shù)學(xué)上冊《二次函數(shù)與一元二次方程》二次函數(shù)PPT優(yōu)秀課件,共19頁。

教學(xué)目標(biāo)

【知識(shí)與能力】

總結(jié)出二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,表述何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根。

會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解。

【過程與方法】

經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系。

【情感態(tài)度與價(jià)值觀】

通過觀察二次函數(shù)圖象與 x 軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步體會(huì)數(shù)形結(jié)合思想。

教學(xué)重難點(diǎn)

二次函數(shù)與一元二次方程之間的關(guān)系。

利用二次函數(shù)圖像求一元二次方程的實(shí)數(shù)根。

一元二次方程根的情況與二次函數(shù)圖像與x軸位置關(guān)系的聯(lián)系,數(shù)形結(jié)合思想的運(yùn)用。

利用二次函數(shù)的圖象求一元二次方程的近似解。

實(shí)際問題

以 40 m /s的速度將小球沿與地面成 30°角的方向擊出時(shí),球的飛行路線是一條拋物線,如果不考慮空氣阻力,球的飛行高度 h (單位:m)與飛行時(shí)間 t (單位:s)之間具有關(guān)系:h= 20 t – 5 t 2   

考慮下列問題:

(1)球的飛行高度能否達(dá)到 15 m? 若能,需要多少時(shí)間?

(2)球的飛行高度能否達(dá)到 20 m? 若能,需要多少時(shí)間?

(3)球的飛行高度能否達(dá)到 20.5 m?為什么?

(4)球從飛出到落地要用多少時(shí)間?

解:(1)當(dāng) h = 15 時(shí),20 t – 5 t 2 = 15

t 2 - 4 t +3 = 0

t 1 = 1,t 2 = 3

當(dāng)球飛行 1s 和 3s 時(shí),它的高度為 15m .

(2)當(dāng) h = 20 時(shí),20 t – 5 t 2 = 20

t 2 - 4 t +4 = 0

t 1 = t 2 = 2

當(dāng)球飛行 2s 時(shí),它的高度為 20m .

(3)當(dāng) h = 20.5 時(shí),20 t – 5 t 2 = 20.5

t 2 - 4 t +4.1 = 0

因?yàn)?-4)2-4×4.1 < 0 ,所以方程無實(shí)根。

球的飛行高度達(dá)不到 20.5 m.

(4)當(dāng) h = 0 時(shí),20 t – 5 t 2 = 0

t 2 - 4 t  = 0

t 1 = 0,t 2 = 4

當(dāng)球飛行 0s 和 4s 時(shí),它的高度為 0m ,即 0s時(shí),球從地面飛出,4s 時(shí)球落回地面。

... ... ...

關(guān)鍵詞:二次函數(shù)與一元二次方程PPT課件免費(fèi)下載,二次函數(shù)PPT下載,.PPTX格式;

《二次函數(shù)與一元二次方程》二次函數(shù)PPT優(yōu)秀課件 下載地址:

本站素材僅供學(xué)習(xí)研究使用,請(qǐng)勿用于商業(yè)用途。未經(jīng)允許,禁止轉(zhuǎn)載。

與本課相關(guān)的PPT課件:

熱門PPT課件
最新PPT課件
相關(guān)PPT標(biāo)簽