全站首頁(yè)|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學(xué)課件 > 人教高中數(shù)學(xué)B版必修一 > 《集合的表示方法》集合與常用邏輯用語PPT

《集合的表示方法》集合與常用邏輯用語PPT

《集合的表示方法》集合與常用邏輯用語PPT 詳細(xì)介紹:

《集合的表示方法》集合與常用邏輯用語PPT《集合的表示方法》集合與常用邏輯用語PPT《集合的表示方法》集合與常用邏輯用語PPT《集合的表示方法》集合與常用邏輯用語PPT

《集合的表示方法》集合與常用邏輯用語PPT

第一部分內(nèi)容:課標(biāo)闡釋

1.掌握集合的兩種表示方法——列舉法和描述法.

2.能夠利用集合的兩種表示方法表示一些簡(jiǎn)單的集合.

3.理解集合的特征性質(zhì),會(huì)用集合的特征性質(zhì)描述一些集合,如數(shù)集、解集和一些基本圖形構(gòu)成的集合等.

... ... ...

集合的表示方法PPT,第二部分內(nèi)容:自主預(yù)習(xí)

知識(shí)點(diǎn)一、列舉法

1.思考

用列舉法可以表示無限集嗎?

提示:可以.但構(gòu)成集合的元素必須具有明顯的規(guī)律,并且表示時(shí)要把元素間的規(guī)律呈現(xiàn)清楚,如正整數(shù)集N+可表示為{1,2,3,4,5,6,…}.

2.填空.

把集合中的元素一一列舉出來(相鄰元素之間用逗號(hào)分隔),并寫在大括號(hào)內(nèi),以此來表示集合的方法稱為列舉法.

3.做一做

用列舉法表示集合{x∈N|-1≤x≤   }為{0,1,2}.

知識(shí)點(diǎn)二、描述法

1.思考

用列舉法與描述法表示集合的區(qū)別是什么?

提示:

2.填空

一般地,如果屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有這個(gè)性質(zhì),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì).此時(shí),集合A可以用它的性質(zhì)p(x)表示為{x|p(x)},這種表示集合的方法稱為特征性質(zhì)描述法,簡(jiǎn)稱描述法.

3.做一做

不等式5x<2 018在實(shí)數(shù)范圍內(nèi)的解集可表示為____________。

知識(shí)點(diǎn)三、區(qū)間的概念

1.思考

(1)如圖,如何把滿足數(shù)軸上的數(shù)的集合表示出來?

提示:A={x|-3<x≤2}

(2)能否用更為簡(jiǎn)潔的符號(hào)表示A={x|-3<x≤2}?

提示:可以用區(qū)間表示為(-3,2].

(3)區(qū)間與數(shù)集有何關(guān)系?

提示:(1)聯(lián)系:區(qū)間實(shí)際上是一類特殊的數(shù)集(連續(xù)的)的符號(hào)表示,是集合的另一種表達(dá)形式;

(2)區(qū)別:不連續(xù)的數(shù)集不能用區(qū)間表示,如整數(shù)集、自然數(shù)集等;

(3)區(qū)間與區(qū)間之間可以用集合的運(yùn)算符號(hào)連接起來,表示兩個(gè)集合之間的運(yùn)算.

... ... ...

集合的表示方法PPT,第三部分內(nèi)容:探究學(xué)習(xí)

用列舉法表示集合

例1 用列舉法表示下列集合:

(1)36與60的公約數(shù)構(gòu)成的集合;

(2)方程(x-4)2(x-2)=0的根構(gòu)成的集合;

(3)一次函數(shù)y=x-1與y=-2/3x+4/3的圖像的交點(diǎn)構(gòu)成的集合.

分析:(1)要明確公約數(shù)的含義;(2)注意4是重根;(3)要寫成點(diǎn)集形式.

解:(1)36與60的公約數(shù)有1,2,3,4,6,12,所求集合可表示為{1,2,3,4,6,12};

(2)方程(x-4)2(x-2)=0的根是4,2,所求集合可表示為{2,4};

反思感悟列舉法應(yīng)用的解題策略

1.一般地,當(dāng)集合中元素的個(gè)數(shù)較少時(shí),可采用列舉法;當(dāng)集合中元素較多或無限,且有一定規(guī)律時(shí),也可用列舉法表示,但必須把元素間的規(guī)律呈現(xiàn)清楚,才能用省略號(hào).

2.要弄清楚集合中的元素是什么,是數(shù)還是點(diǎn),還是其他的元素,從而用相應(yīng)的形式寫出元素表示集合.

變式訓(xùn)練1試用列舉法表示下列集合:

(1)滿足-3≤x≤0,且x∈Z;

(2)倒數(shù)等于其本身數(shù)的集合;

(3)滿足x+y=3,且x∈N,y∈N的有序數(shù)對(duì);

(4)方程x2-4x+4=0的解.

解:(1)∵-3≤x≤0,且x∈Z,∴x=-3,-2,-1,0.

故滿足條件的集合為{-3,-2,-1,0}.

(2)∵x=   ,∴x=±1.

∴滿足條件的集合為{-1,1}.

(3)∵x+y=3,且x∈N,y∈N,

∴當(dāng)x=0時(shí),y=3;當(dāng)x=1時(shí),y=2;當(dāng)x=2時(shí),y=1;當(dāng)x=3時(shí),y=0.

∴滿足條件的集合為{(0,3),(1,2),(2,1),(3,0)}.

(4)∵方程x2-4x+4=0的解為x=2,

∴滿足條件的集合為{2}.

... ... ...

集合的表示方法PPT,第四部分內(nèi)容:思維辨析

元素分析法

解決集合問題,應(yīng)對(duì)集合的概念有深刻理解,解題時(shí)能不能把集合轉(zhuǎn)化為相關(guān)的數(shù)學(xué)知識(shí)是解決問題的關(guān)鍵,而集合離不開元素,所以分析元素是解決問題的核心.元素分析法就是抓住元素進(jìn)行分析,即元素是什么?具備哪些性質(zhì)?是否滿足元素的三個(gè)特征?(即確定性、互異性、無序性)

典例 下列四個(gè)集合:

①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1};④{y=x2+1}.

(1)它們各自的含義是什么?

(2)它們是不是相同的集合?

分析:在解答用描述法表示的集合的問題時(shí),不能只關(guān)注條件中的關(guān)系式,而不注意“代表元素”的含義.元素是集合的基本組成部分.看到一個(gè)集合,先要關(guān)注元素是什么,再關(guān)注元素的基本特征.

解:(1)①{x|y=x2+1}中的代表元素是x(二次函數(shù)y=x2+1中的自變量),表示的是該函數(shù)自變量的取值范圍.顯然x∈R,該集合表示實(shí)數(shù)集R.

②{y|y=x2+1}中的代表元素是y(二次函數(shù)y=x2+1中的因變量),表示的是該函數(shù)的函數(shù)值構(gòu)成的集合.由圖易知(圖略),y≥1,該集合就是{y|y≥1}.

③{(x,y)|y=x2+1}中的代表元素是(x,y),該集合可以理解為是滿足y=x2+1的有序?qū)崝?shù)對(duì)(x,y)的集合,也可以認(rèn)為是坐標(biāo)平面內(nèi)滿足y=x2+1的點(diǎn)(x,y)構(gòu)成的集合.

④集合{y=x2+1}表示的是以方程y=x2+1(或函數(shù)解析式y(tǒng)=x2+1)為元素的集合.

(2)由(1)知,集合①是實(shí)數(shù)集,集合②是不小于1的實(shí)數(shù)集,集合③是拋物線上的點(diǎn)構(gòu)成的點(diǎn)集,集合④是單元素集.故它們是互不相同的集合.

... ... ...

集合的表示方法PPT,第五部分內(nèi)容:當(dāng)堂檢測(cè)

1.集合{x∈N+|2x-1<9}的另一種表示方法是(  )

A.{0,1,2,3,4}  B.{1,2,3,4}  C.{0,1,2,3,4,5}   D.{1,2,3,4,5}

答案:B

2.下列各組中的M,P表示同一集合的是(  )

A.M={3,-1},P={(3,-1)}

B.M={(3,1)},P={(1,3)}

C.M={y|y=x2-1,x∈R},P={x|x=t2-1,t∈R}

D.M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}

解析:選項(xiàng)A中,M是由3,-1兩個(gè)元素構(gòu)成的集合,而集合P是由點(diǎn)(3,-1)構(gòu)成的集合;選項(xiàng)B中,(3,1)與(1,3)表示不同的點(diǎn),故M≠P;選項(xiàng)D中,M是二次函數(shù)y=x2-1,x∈R的所有因變量構(gòu)成的集合,而集合P是二次函數(shù)y=x2-1,x∈R圖像上所有點(diǎn)構(gòu)成的集合.

答案:C

3.用列舉法表示集合A={y|y=x2-1,-2≤x≤2,且x∈Z}是_________.

解析:∵x=-2,-1,0,1,2,

∴對(duì)應(yīng)的函數(shù)值y=3,0,-1,0,3,

∴集合A用列舉法可表示為{-1,0,3}.

答案:{-1,0,3}

... ... ...

關(guān)鍵詞:高中人教B版數(shù)學(xué)必修一PPT課件免費(fèi)下載,集合的表示方法PPT下載,集合與常用邏輯用語PPT下載,.PPT格式;

《集合的表示方法》集合與常用邏輯用語PPT 下載地址:

本站素材僅供學(xué)習(xí)研究使用,請(qǐng)勿用于商業(yè)用途。未經(jīng)允許,禁止轉(zhuǎn)載。

與本課相關(guān)的PPT課件:

  • 《集合及其表示方法》集合與常用邏輯用語PPT課件(第2課時(shí)集合的表示方法)

    《集合及其表示方法》集合與常用邏輯用語PPT課件(第2課時(shí)集合的表示方法)

    《集合及其表示方法》集合與常用邏輯用語PPT課件(第2課時(shí)集合的表示方法) 第一部分內(nèi)容:學(xué) 習(xí) 目 標(biāo) 1.掌握集合的兩種表示方法.(重點(diǎn)) 2.掌握區(qū)間的概念及表示方法.(重點(diǎn)) 核 心 素 養(yǎng) 1.借助空集,區(qū)間的概念,培養(yǎng)數(shù)學(xué)抽象的素養(yǎng). 2.通過學(xué)習(xí)集合的..

熱門PPT課件
最新PPT課件
相關(guān)PPT標(biāo)簽