北師大版八年級數(shù)學(xué)下冊《等腰三角形》三角形的證明PPT下載(第3課時),共22頁。
學(xué)習(xí)目標(biāo)
1、學(xué)會證明等角對等邊,并進行等腰三角形的判定;
2、體會反證法,并會用反證法進行證明;
3、規(guī)范證明的書寫過程.
講授新課
1、等腰三角形的性質(zhì)是什么?
①有兩個相等的角.
②有兩條相等的邊.
③底邊上的中線、高和頂角的平分線重合.
等腰三角形的判定定理:
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.
已知:在△ABC中,∠B= ∠C
求證:AB=AC
證法一:作∠BAC的平分線AD.
在 △BAD和△CAD中,
∠BAD= ∠ CAD,
∠B=∠C,
AD=AD(公共邊),
∵△BAD≌△CAD(AAS),
∴AB=AC(全等三角形的對應(yīng)邊相等).
證法二:作AD⊥BC,垂足為D.
在 △BAD和△CAD中,
∠ADB= ∠ADC,
∠B=∠C,
AD=AD(公共邊),
∵△BAD≌△CAD(AAS),
∴AB=AC(全等三角形的對應(yīng)邊相等).
推論1:三個角都相等的三角形是等邊三角形.
這是由判定定理推導(dǎo)出的一個定理,即判定一個三角形是等邊三角形的一種方法.
推論2:有一個角等于60°的等腰三角形是等邊三角形.
這是由判定定理推導(dǎo)出的又一個定理,即判定一個三角形是等邊三角形的另外一種方法.
例1 如圖,已知∠A=36°,∠DBC=36°,∠C=72°,計算∠1和∠2的度數(shù),并說明圖中有哪些等腰三角形.
解:∵∠A=36°∠DBC= 36° ∠C= 72°
∴∠2=180 °- ∠A - ∠DBC - ∠C = 36°
(三角形內(nèi)角和定理)
∴ ∠A= ∠2
∴AD=BD(等角對等邊)
∵ ∠1= ∠A +∠2= 72°= ∠C
∴BD=BC (等角對等邊)
∴圖中的等腰三角形有△ADB、△ABC、△BDC三個.
例2 如圖,CD是等腰直角三角形ABC斜邊上的高,找出圖中有哪些等腰直角三角形。
答:圖中的等腰直角三角形有:
等腰Rt△ABC、等腰Rt△ADC和等腰Rt△ CDB
用反證法證題的一般步驟
1. 假設(shè)命題的結(jié)論不成立;
2. 從這個假設(shè)出發(fā),應(yīng)用正確的推理方法, 得出與定義、基本事實、已有定理或已知條件 相矛盾的結(jié)果;
3. 由矛盾的結(jié)果判定假設(shè)不正確,從而肯定命題的結(jié)論正確.
... ... ...
關(guān)鍵詞:等腰三角形PPT課件免費下載,三角形的證明PPT下載,.PPTX格式