全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學課件 > 人教高中數(shù)學A版必修一 > 《單調(diào)性、最大值與最小值》三角函數(shù)PPT

《單調(diào)性、最大值與最小值》三角函數(shù)PPT

《單調(diào)性、最大值與最小值》三角函數(shù)PPT 詳細介紹:

《單調(diào)性、最大值與最小值》三角函數(shù)PPT《單調(diào)性、最大值與最小值》三角函數(shù)PPT《單調(diào)性、最大值與最小值》三角函數(shù)PPT《單調(diào)性、最大值與最小值》三角函數(shù)PPT《單調(diào)性、最大值與最小值》三角函數(shù)PPT

《單調(diào)性、最大值與最小值》三角函數(shù)PPT

第一部分內(nèi)容:課標闡釋

1.理解正弦函數(shù)與余弦函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間.

2.能夠利用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小.

3.能夠結(jié)合三角函數(shù)的單調(diào)性求函數(shù)的最值和值域.

... ... ...

單調(diào)性最大值與最小值PPT,第二部分內(nèi)容:自主預習

一、正弦函數(shù)與余弦函數(shù)的單調(diào)性

1.觀察正弦曲線,正弦函數(shù)在哪些區(qū)間上是增函數(shù)?在哪些區(qū)間上是減函數(shù)?如何將這些單調(diào)區(qū)間進行整合?類似地,余弦函數(shù)在哪些區(qū)間上是增函數(shù)?在哪些區(qū)間上是減函數(shù)?怎樣整合這些區(qū)間?

提示:正弦函數(shù)在每一個閉區(qū)間["-"  π/2+2kπ","  π/2+2kπ]

(k∈Z)上都是增函數(shù);在每一個閉區(qū)間[π/2+2kπ","  3π/2+2kπ]

(k∈Z)上都是減函數(shù);余弦函數(shù)在每一個閉區(qū)間[-π+2kπ,2kπ](k∈Z)上都是增函數(shù);在每一個閉區(qū)間[2kπ,π+2kπ](k∈Z)上都是減函數(shù).

2.填空

(1)正弦函數(shù)y=sin x在每一個閉區(qū)間["-"  π/2+2kπ","  π/2+2kπ](k∈Z)上都單調(diào)遞增;在每一個閉區(qū)間[π/2+2kπ","  3π/2+2kπ](k∈Z)上都單調(diào)遞減;

(2)余弦函數(shù)y=cos x在每一個閉區(qū)間[-π+2kπ,2kπ](k∈Z)上都單調(diào)遞增;在每一個閉區(qū)間[2kπ,π+2kπ](k∈Z)上都單調(diào)遞減.

3.做一做

(1)函數(shù)y=sin 2x-1的單調(diào)遞增區(qū)間是___________; 

(2)函數(shù)y=3-cos 2x的單調(diào)遞增區(qū)間是___________. 

解析:(1)令-π/2+2kπ≤2x≤π/2+2kπ,k∈Z,

解得-π/4+kπ≤x≤π/4+kπ,k∈Z,故函數(shù)的單調(diào)遞增區(qū)間是["-"  π/4+kπ","  π/4+kπ](k∈Z).

(2)函數(shù)y=3-cos 2x的單調(diào)遞增區(qū)間即為函數(shù)y=cos 2x的單調(diào)遞減區(qū)間,令2kπ≤2x≤π+2kπ,k∈Z,解得kπ≤x≤π/2+kπ,k∈Z,故函數(shù)的遞增區(qū)間是 kπ,π/2+kπ (k∈Z).

答案:(1)["-"  π/4+kπ","  π/4+kπ](k∈Z)

(2)[kπ","  π/2+kπ](k∈Z)

二、正弦函數(shù)與余弦函數(shù)的最值和值域

1.觀察正弦曲線和余弦曲線,正、余弦函數(shù)是否存在最大值和最小值?若存在,其最大值和最小值分別為多少?當自變量x分別取何值時,正弦函數(shù)y=sin x取得最大值和最小值?余弦函數(shù)呢?

提示:正、余弦函數(shù)存在最大值1和最小值-1;正弦函數(shù)當且僅當x=2kπ+π/2(k∈Z)時取最大值1,當且僅當x=2kπ+3π/2(k∈Z)時取最小值-1;余弦函數(shù)當且僅當x=2kπ(k∈Z)時取最大值1,當且僅當x=π+2kπ(k∈Z)時取最小值-1.

2.填空

(1)正弦函數(shù)y=sin x當且僅當x=2kπ+π/2(k∈Z)時取最大值1;當且僅當x=2kπ+3π/2(k∈Z)時取最小值-1;

(2)余弦函數(shù)y=cos x當且僅當x=2kπ(k∈Z)時取最大值1;當且僅當x=2kπ+π(k∈Z)時取最小值-1.

(3)正弦函數(shù)y=sin x、余弦函數(shù)y=cos x的值域都是[-1,1].

3.做一做

(1)函數(shù)y=2-3sin x的最小值是___________; 

(2)當函數(shù)y=cos   取得最大值時,x的值等于___________. 

解析:(1)因為y=sin x的最大值為1,所以y=2-3sin x的最小值是-1.

(2)當   =2kπ,k∈Z,即x=4kπ,k∈Z時,函數(shù)y=cos   取得最大值.

答案:(1)-1 (2)4kπ(k∈Z)

... ... ...

單調(diào)性最大值與最小值PPT,第三部分內(nèi)容:探究學習

求三角函數(shù)的單調(diào)區(qū)間

例1求下列函數(shù)的單調(diào)遞減區(qū)間:

(1)y=1/2cos(2x+π/3);

(2)y=2sin(π/4 "-" x).

分析:(1)可采用整體換元法并結(jié)合正弦函數(shù)、余弦函數(shù)的單調(diào)區(qū)間求解;(2)可先將自變量x的系數(shù)轉(zhuǎn)化為正數(shù)再求單調(diào)區(qū)間.

解:(1)令z=2x+π/3,而函數(shù)y=cos z的單調(diào)遞減區(qū)間是[2kπ,2kπ+π](k∈Z).

∴當原函數(shù)單調(diào)遞減時,可得2kπ≤2x+π/3≤2kπ+π(k∈Z),

解得kπ-π/6≤x≤kπ+π/3(k∈Z).

∴原函數(shù)的單調(diào)遞減區(qū)間是[kπ"-"  π/6 "," kπ+π/3](k∈Z).

反思感悟 與正弦函數(shù)、余弦函數(shù)有關的單調(diào)區(qū)間的求解技巧:

(1)結(jié)合正弦、余弦函數(shù)的圖象,熟記它們的單調(diào)區(qū)間;

(2)確定函數(shù)y=Asin(ωx+φ)(A>0,ω>0)單調(diào)區(qū)間的方法:采用“換元”法整體代換,將ωx+φ看作一個整體,可令“z=ωx+φ”,即通過求y=Asin z的單調(diào)區(qū)間求出原函數(shù)的單調(diào)區(qū)間.若ω<0,則可利用誘導公式將x的系數(shù)轉(zhuǎn)變?yōu)檎龜?shù).

... ... ...

單調(diào)性最大值與最小值PPT,第四部分內(nèi)容:思維辨析

求三角函數(shù)最值時忽視分類討論或忽略定義域致誤

1.忽視分類討論

典例1已知函數(shù)y=2asin(2x"-"  π/3)+b的定義域為 0,π/2 ,函數(shù)的最大值為1,最小值為-5,求a和b的值.

錯解∵0≤x≤π/2,∴-π/3≤2x-π/3≤2π/3.

∴-√3/2≤sin(2x"-"  π/3)≤1.

則{■(2a+b=1"," @"-" √3 a+b="-" 5"," )┤解得{■(a=12"-" 6√3 "," @b="-" 23+12√3 "." )┤

錯解錯在什么地方?你能發(fā)現(xiàn)嗎?怎樣避免這類錯誤呢?

提示:錯解中默認為a>0,忽視了對a<0這一情況的討論,導致丟解.

正解:∵0≤x≤π/2,∴-π/3≤2x-π/3≤2π/3.

∴-√3/2≤sin(2x"-"  π/3)≤1.

若a>0,則{■(2a+b=1"," @"-" √3 a+b="-" 5"," )┤解得{■(a=12"-" 6√3 "," @b="-" 23+12√3 "." )┤

若a<0,則{■(2a+b="-" 5"," @"-" √3 a+b=1"," )┤解得{■(a="-" 12+6√3 "," @b=19"-" 12√3 "." )┤

防范措施 形如y=Asin(ωx+φ)+B或y=Acos(ωx+φ)+B的函數(shù),其最值與參數(shù)A的正負有關,因此在解決這類問題時,要注意對A分A>0和A<0兩種情況進行分類討論.

... ... ...

單調(diào)性最大值與最小值PPT,第五部分內(nèi)容:隨堂演練

1.函數(shù)y=-cos x在區(qū)間["-"  π/2 ","  π/2]上是(  )

A.增函數(shù) B.減函數(shù)

C.先減后增函數(shù) D.先增后減函數(shù)

解析:結(jié)合函數(shù)在["-"  π/2 ","  π/2]上的圖象可知C正確.

答案:C

2.函數(shù)y=2-sin x的最大值及取最大值時x的值為(  ) 

A.ymax=3,x=π/2

B.ymax=1,x=π/2+2kπ(k∈Z)

C.ymax=3,x=-π/2+2kπ(k∈Z)

D.ymax=3,x=π/2+2kπ(k∈Z)

解析:因為y=2-sin x,所以當sin x=-1時,ymax=3,此時x=-π/2+2kπ(k∈Z).

答案:C 

... ... ...

關鍵詞:高中人教A版數(shù)學必修一PPT課件免費下載,單調(diào)性最大值與最小值PPT下載,三角函數(shù)PPT下載,.PPT格式;

《單調(diào)性、最大值與最小值》三角函數(shù)PPT 下載地址:

本站素材僅供學習研究使用,請勿用于商業(yè)用途。未經(jīng)允許,禁止轉(zhuǎn)載。

與本課相關的PPT課件:

熱門PPT課件
最新PPT課件
相關PPT標簽